Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In(OH)3 and In2O3 nanorice and microflowers: morphology transformation and optical properties

Identifieur interne : 000218 ( Chine/Analysis ); précédent : 000217; suivant : 000219

In(OH)3 and In2O3 nanorice and microflowers: morphology transformation and optical properties

Auteurs : RBID : Pascal:13-0157471

Descripteurs français

English descriptors

Abstract

In this work, In(OH)3 and In2O3 nanostructures with controllable complex morphologies were successfully synthesized through a simple hydrothermal process followed by annealing. The In(OH)3 nanostructures were synthesized using urea as the alkaline source at a relatively low temperature without any templates or surfactants. The morphology transformation of In(OH)3 from nanorice to micro-flowers was observed. The In(OH)3 nanorice are 180 nm in diameter and 550 nm in length, the microflowers are about 3 μm in diameter and composed of thin nanoflakes with 4-nm thickness. In2O3 with similar morphology was formed by annealing In(OH)3 precursors. The nanostructures were characterized using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Our results suggest that a new nucleation-growth-etching-regrowth mechanism can explain the morphology transformation from nanorice to flower-like frameworks. Raman spectrum and photoluminescence (PL) properties of In2O3 were also measured, and a 3-nm blue-shift of PL spectrum was observed due to the thinness of the nanostructures.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0157471

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">In(OH)
<sub>3</sub>
and In
<sub>2</sub>
O
<sub>3</sub>
nanorice and microflowers: morphology transformation and optical properties</title>
<author>
<name>WEIAN REN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Materials Science and Engineering, Sichuan University</s1>
<s2>Chengdu, Sichuan 610064</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Chengdu, Sichuan 610064</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YING LIU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Materials Science and Engineering, Sichuan University</s1>
<s2>Chengdu, Sichuan 610064</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Chengdu, Sichuan 610064</wicri:noRegion>
</affiliation>
</author>
<author>
<name>ZONGWEI MEI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Materials Science and Engineering, Sichuan University</s1>
<s2>Chengdu, Sichuan 610064</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Chengdu, Sichuan 610064</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Chemistry, Graduate School of Science, Hokkaido University</s1>
<s2>Sapporo</s2>
<s3>JPN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Sapporo</wicri:noRegion>
</affiliation>
</author>
<author>
<name>XIAOGANG WEN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Materials Science and Engineering, Sichuan University</s1>
<s2>Chengdu, Sichuan 610064</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Chengdu, Sichuan 610064</wicri:noRegion>
</affiliation>
</author>
<author>
<name>SUHUA WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of Intelligent Machines, Chinese Academy of Sciences, P.O. Box 1130</s1>
<s2>Hefei, Anhui 230031</s2>
<s3>CHN</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei, Anhui 230031</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0157471</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0157471 INIST</idno>
<idno type="RBID">Pascal:13-0157471</idno>
<idno type="wicri:Area/Main/Corpus">000F41</idno>
<idno type="wicri:Area/Main/Repository">000B14</idno>
<idno type="wicri:Area/Chine/Extraction">000218</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1388-0764</idno>
<title level="j" type="abbreviated">J. nanopart. res.</title>
<title level="j" type="main">Journal of nanoparticle research</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Annealing</term>
<term>Etching</term>
<term>Growth mechanism</term>
<term>Hydrothermal synthesis</term>
<term>Indium hydroxide</term>
<term>Indium oxide</term>
<term>Morphology</term>
<term>Nanomaterial synthesis</term>
<term>Nanostructured materials</term>
<term>Nanostructures</term>
<term>Nucleation</term>
<term>Optical properties</term>
<term>Photoluminescence</term>
<term>Precursor</term>
<term>Raman spectra</term>
<term>Scanning electron microscopy</term>
<term>Spectral line shift</term>
<term>Surfactants</term>
<term>Template reaction</term>
<term>Transmission electron microscopy</term>
<term>Urea</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Morphologie</term>
<term>Propriété optique</term>
<term>Nanostructure</term>
<term>Synthèse hydrothermale</term>
<term>Recuit</term>
<term>Synthèse nanomatériau</term>
<term>Urée</term>
<term>Réaction dirigée</term>
<term>Agent surface</term>
<term>Nanomatériau</term>
<term>Précurseur</term>
<term>Diffraction RX</term>
<term>Microscopie électronique balayage</term>
<term>Microscopie électronique transmission</term>
<term>Nucléation</term>
<term>Mécanisme croissance</term>
<term>Gravure</term>
<term>Spectre Raman</term>
<term>Photoluminescence</term>
<term>Déplacement raie</term>
<term>Hydroxyde d'indium</term>
<term>Oxyde d'indium</term>
<term>In2O3</term>
<term>6865</term>
<term>7867</term>
<term>8116B</term>
<term>8116</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this work, In(OH)
<sub>3</sub>
and In
<sub>2</sub>
O
<sub>3</sub>
nanostructures with controllable complex morphologies were successfully synthesized through a simple hydrothermal process followed by annealing. The In(OH)
<sub>3</sub>
nanostructures were synthesized using urea as the alkaline source at a relatively low temperature without any templates or surfactants. The morphology transformation of In(OH)
<sub>3</sub>
from nanorice to micro-flowers was observed. The In(OH)
<sub>3</sub>
nanorice are 180 nm in diameter and 550 nm in length, the microflowers are about 3 μm in diameter and composed of thin nanoflakes with 4-nm thickness. In
<sub>2</sub>
O
<sub>3</sub>
with similar morphology was formed by annealing In(OH)
<sub>3</sub>
precursors. The nanostructures were characterized using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Our results suggest that a new nucleation-growth-etching-regrowth mechanism can explain the morphology transformation from nanorice to flower-like frameworks. Raman spectrum and photoluminescence (PL) properties of In
<sub>2</sub>
O
<sub>3</sub>
were also measured, and a 3-nm blue-shift of PL spectrum was observed due to the thinness of the nanostructures.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1388-0764</s0>
</fA01>
<fA03 i2="1">
<s0>J. nanopart. res.</s0>
</fA03>
<fA05>
<s2>15</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>In(OH)
<sub>3</sub>
and In
<sub>2</sub>
O
<sub>3</sub>
nanorice and microflowers: morphology transformation and optical properties</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>WEIAN REN</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>YING LIU</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ZONGWEI MEI</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>XIAOGANG WEN</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SUHUA WANG</s1>
</fA11>
<fA14 i1="01">
<s1>School of Materials Science and Engineering, Sichuan University</s1>
<s2>Chengdu, Sichuan 610064</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Chemistry, Graduate School of Science, Hokkaido University</s1>
<s2>Sapporo</s2>
<s3>JPN</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institute of Intelligent Machines, Chinese Academy of Sciences, P.O. Box 1130</s1>
<s2>Hefei, Anhui 230031</s2>
<s3>CHN</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s2>1452.1-1452.10</s2>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>28202</s2>
<s5>354000173252840280</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0157471</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>PR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of nanoparticle research</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this work, In(OH)
<sub>3</sub>
and In
<sub>2</sub>
O
<sub>3</sub>
nanostructures with controllable complex morphologies were successfully synthesized through a simple hydrothermal process followed by annealing. The In(OH)
<sub>3</sub>
nanostructures were synthesized using urea as the alkaline source at a relatively low temperature without any templates or surfactants. The morphology transformation of In(OH)
<sub>3</sub>
from nanorice to micro-flowers was observed. The In(OH)
<sub>3</sub>
nanorice are 180 nm in diameter and 550 nm in length, the microflowers are about 3 μm in diameter and composed of thin nanoflakes with 4-nm thickness. In
<sub>2</sub>
O
<sub>3</sub>
with similar morphology was formed by annealing In(OH)
<sub>3</sub>
precursors. The nanostructures were characterized using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Our results suggest that a new nucleation-growth-etching-regrowth mechanism can explain the morphology transformation from nanorice to flower-like frameworks. Raman spectrum and photoluminescence (PL) properties of In
<sub>2</sub>
O
<sub>3</sub>
were also measured, and a 3-nm blue-shift of PL spectrum was observed due to the thinness of the nanostructures.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60H65</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H67</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A16B</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Morphologie</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Morphology</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Nanostructure</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Nanostructures</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Synthèse hydrothermale</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Hydrothermal synthesis</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Recuit</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Annealing</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Synthèse nanomatériau</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Nanomaterial synthesis</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Síntesis nanomaterial</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Urée</s0>
<s2>NK</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Urea</s0>
<s2>NK</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Réaction dirigée</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Template reaction</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Reacción dirigida</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Agent surface</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Surfactants</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Précurseur</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Precursor</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>XRD</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Nucléation</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Nucleation</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Gravure</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Etching</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Spectre Raman</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Raman spectra</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Déplacement raie</s0>
<s5>34</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Spectral line shift</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Hydroxyde d'indium</s0>
<s5>35</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Indium hydroxide</s0>
<s5>35</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Indio hidróxido</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>36</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>36</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>36</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>In2O3</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>6865</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>7867</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>8116B</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>8116</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>140</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000218 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000218 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0157471
   |texte=   In(OH)3 and In2O3 nanorice and microflowers: morphology transformation and optical properties
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024